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Single-cell data integration can provide a comprehensive molecular view of cells, and
many algorithms have been developed to remove unwanted technical or biological
variations and integrate heterogeneous single-cell datasets. Despite their wide usage,
existing methods suffer from several fundamental limitations. In particular, we
lack a rigorous statistical test for whether two high-dimensional single-cell datasets
are alignable (and therefore should even be aligned). Moreover, popular methods
can substantially distort the data during alignment, making the aligned data and
downstream analysis difficult to interpret. To overcome these limitations, we present
a spectral manifold alignment and inference (SMAI) framework, which enables
principled and interpretable alignability testing and structure-preserving integration of
single-cell data with the same type of features. SMAI provides a statistical test to robustly
assess the alignability between datasets to avoid misleading inference and is justified by
high-dimensional statistical theory. On a diverse range of real and simulated benchmark
datasets, it outperforms commonly used alignment methods. Moreover, we show that
SMAI improves various downstream analyses such as identification of differentially
expressed genes and imputation of single-cell spatial transcriptomics, providing further
biological insights. SMAI’s interpretability also enables quantification and a deeper
understanding of the sources of technical confounders in single-cell data.

single-cell omics | data alignment | random matrix theory | spectral method | Procrustes analysis

The rapid development of single-cell technologies has enabled the characterization of
complex biological systems at unprecedented scale and resolution. On the one hand,
diverse and heterogeneous single-cell datasets have been generated, enabling opportunities
for integrative profiling of cell types and deeper understandings of the associated biological
processes (1–3). On the other hand, the widely observed technical and biological
variations across datasets also impose unique challenges to many downstream analyses (4–
6). The variations between datasets can originate from different experimental protocols,
laboratory conditions, sequencing technologies, etc. It may also arise as biological
variations when the samples come from distinct spatial locations, times, tissues, organs,
individuals, or species.

Several computational algorithms have been developed to remove the unwanted
variations and integrate heterogeneous single-cell datasets. To date, the most widely
used data integration methods, such as Seurat (7), LIGER (8), Harmony (9), fastMNN
(10), and Scanorama (11), are built upon the key assumption that there is a shared latent
low-dimensional structure between the datasets of interest. These methods attempt to
obtain an alignment of the datasets by identifying and matching their respective low-
dimensional structures. As a result, the methods would output some integrated cellular
profiles, commonly represented as either a corrected feature matrix, or a joint low-
dimensional embedding matrix, where the unwanted technical or biological variations
between the datasets have been removed. These methods have played an indispensable
role in current single-cell studies such as generating large-scale reference atlases of human
organs (12, 13), inferring lineage differentiation trajectories (14, 15), and multiomic
characterization of COVID-19 pathogenesis and immune response (16, 17).

Despite their popularity, the existing integration methods also suffer from several
fundamental limitations, which makes it difficult to statistically assess findings drawn
from the aligned data. First, there is a lack of statistically rigorous methods to determine
whether two or more datasets should be aligned. Without such a safeguard, existing
methods are used to align and integrate single-cell datasets that do not have a meaningful
shared structure, leading to problematic and misleading interpretations (18, 19). Global
assessment methods such as k-nearest neighbor batch effect test (kBET) (20), guided PCA
(gPCA) (21), probabilistic principal component and covariates analysis (PPCCA) (22),
and metrics such as local inverse Simpson’s index (LISI) (9), average silhouette width
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(ASW) (23), adjusted Rand index (ARI) (24), have been proposed
to quantitatively characterize the quality of alignment or the
extent of batch-effect removal, based on specific alignment
procedures. However, these methods can only provide post-hoc
evaluations of the mixing of batches, which may not necessarily
reflect the actual alignability or structure-sharing between the
original datasets. Moreover, these methods do not account for the
noisiness (ASW, ARI, LISI) or the effects of high dimensionality
(kBET, gPCA, PPCCA) of the single-cell datasets, resulting in
biased estimates and test results. Other methods such as limma
(25) and MAST (26) consider linear batch correction, whose
focus is restricted to differential testing and does not account for
possible covariance shifts.

Moreover, research suggests that existing integration methods
may introduce serious distortions to the individual datasets
during their alignment process (18, 19). In this study, we
systematically evaluate the severity and effects of such distortions
for several popular integration methods. Our results confirm that
these methods, while eliminating the possible differences between
datasets, may also alter the original biological signals contained
in individual datasets, causing misleading results such as power
loss and false discoveries in downstream analyses. Finally, none
of these popular integration methods admits a tractable closed-
form expression of the final alignment function, with a clear
geometric meaning of its constitutive components. As a result,
these methods would suffer from a lack of interpretability, making
it difficult to inspect and understand the nature of any removed
variations, or to distinguish the unwanted variations from the
potentially biologically meaningful variations.

To overcome the above limitations, we present a spectral mani-
fold alignment and inference (SMAI) framework for accountable
and interpretable integration of single-cell data with the same
type of features. Our contribution is two-fold. First, we develop
a rigorous statistical test (SMAI-test) that can robustly determine
the alignability between two datasets. Second, motivated by this
test, we propose an interpretable spectral manifold alignment al-
gorithm (SMAI-align) that enables more reliable data integration
without altering or corrupting the original biological signals. Our
systematic experiments demonstrate that SMAI improves various
downstream analyses such as the identification of cell types and
their associated marker genes, and the prediction of single-
cell spatial transcriptomics. Moreover, we show that SMAI’s
interpretability provides insights into the sources of technical
confounders in single-cell data.

Results
Overview of SMAI. SMAI consists of two components: SMAI-
test flexibly determines the global or partial alignability between
the datasets, whereas SMAI-align searches for the best similarity
transformation to achieve the alignment.

SMAI-test evaluates the statistical significance against the
null hypothesis that two single-cell datasets are alignable up to
some similarity transformation, that is, combinations of scaling,
translation, and rotation. In line with several previous works,
it leverages random matrix theory to be robust to noisy and
high-dimensional single-cell omic data (27–30). As a hypothesis
testing framework that determines the presence and the nature
of batch effects between two datasets, SMAI-test tells users if the
datasets should or should not be aligned by SMAI-test or other
integration methods, as enforcing alignment would introduce
substantial distortions. To increase flexibility, SMAI-test also
allows for testing against partial alignability between the datasets,
where the users can specify a threshold t%, so that the null

hypothesis states that at least t% of the samples in both datasets
are alignable. Recommended values for t are between 50 and
70 depending on the context, to ensure both sufficient sample
size (or power), and flexibility to local heterogeneity (SI Appendix,
Notes); we used t = 60 for the real datasets analyzed in this study.
Importantly, the statistical validity of SMAI-test is theoretically
guaranteed over a wide range of settings (Materials and Methods,
Theorem 1), suitable for modeling high-dimensional single-cell
data. We support the empirical validity of the test with both
simulated data and multiple real-world benchmark datasets,
ranging from transcriptomics, chromatin accessibility, to spatial
transcriptomics.

SMAI-align incorporates a high-dimensional shuffled Pro-
crustes analysis, which iteratively searches for the sample
correspondence and the best similarity transformation that
minimizes the discrepancy between the intrinsic low-dimensional
signal structures of the datasets. SMAI-align enjoys several
advantages over the existing integration methods. First, SMAI-
align returns an alignment function in terms of a similarity
transformation, which has a closed-form expression (SI Appendix,
Notes) equipped with a clear geometric meaning. The better
interpretability enables quantitative characterization of the source
and magnitude of any removed and remaining variations, and
may bring insights into the mechanisms underlying the batch
effects. Second, due to the shape-invariance property of similarity
transformations, SMAI-align preserves the relative distances
between the samples within individual datasets throughout the
alignment, making the final integrated data less susceptible to
technical distortions and therefore more suitable and reliable
for downstream analyses. Third, unlike many existing methods
(such as Seurat, Harmony, and fastMNN), which require
specifying a target dataset for alignment and whose performance
is asymmetric with respect to the order of datasets, SMAI-
align obtains a symmetric invertible alignment function that is
indifferent to such an order, making its output more consistent
and robust to technical artifacts. Below we sketch the main ideas
of the SMAI algorithm and leave the details to Materials and
Methods and SI Appendix, Notes.

SMAI-Test. Suppose that X ∈ Rd×n1 and Y ∈ Rd×n2 are
the normalized count matrices generated from two single-cell
experiments, with d being the number of features (genes) and
n1 and n2 being the respective numbers of cells. To test for the
alignability between X and Y, SMAI-test assumes a low-rank
spiked covariance matrix model (SI Appendix, Fig. S1) where the
low-dimensional signal structures of X and Y are encoded by
the leading eigenvalues and eigenvectors of their corresponding
population covariance matrices �1 and �2. As a result, the null
hypothesis that the signal structures underlying X and Y are
identical up to a similarity transformation implies that the leading
eigenvalues of �1 and �2 are identical up to a global scaling
factor. As such, a test statistic T (X,Y) based on comparing the
leading eigenvalues of the empirical covariance matrices of X
and Y can be computed, whose theoretical null distribution as
(n1, n2, d)→∞ is derived using random matrix theory. Thus,
SMAI-test returns the P-value by comparing the test statistic
T (X,Y) with its asymptotic null distribution (Fig. 1A).

For the test of partial alignability, a sample splitting procedure
is adopted where the first part is used to identify subsets of the
two datasets with maximal correspondence or structure-sharing
(Materials and Methods), and the second part is used to compute
the test statistic and the P-value concerning the alignability
between such maximal correspondence subsets. As such, we avoid
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A

B

Fig. 1. Overview and illustration of the SMAI algorithm. (A) SMAI-test imposes a low-rank spiked covariance matrix model where the low-dimensional signal
structures of data matrices are encoded by a few largest eigenvalues of the population covariance matrices. Under the null hypothesis that the underlying
signal structures are alignable up to a similarity transformation, a test statistic based on comparing the leading eigenvalues of the empirical covariance
matrices is computed, whose theoretical null distribution as (n, d) → ∞ is derived using random matrix theory. The final P-value returned by SMAI-test is
used to infer the alignability of the two datasets. (B) SMAI-align aims to solve the shuffled Procrustes optimization problem (1). To do so, SMAI-align starts
with a denoising procedure, and then adopts an iterative spectral algorithm to achieve similarity matching between the two datasets using high-dimensional
Procrustes analysis. The method returns an integrated dataset containing all the samples with the original features, along with a closed-form alignment function,
which is interpretable and can be readily used for various downstream analyses.

selection bias due to repeated use of the samples in both selection
and test steps, ensuring a valid test.

SMAI-Align. SMAI-align starts by filtering out the low-rank signal
structures in X and Y to obtain their denoised versions X̂ and Ŷ,
and then approximately solves the following shuffled Procrustes
optimization problem

min
�,
,P,R

‖X̂ − �RŶP− 
1>n1
‖F . [1]

Here, 1n ∈ Rn is an all-one vector, and the minimization is
achieved for some global scaling factor � ∈ R, some vector

 ∈ Rd adjusting for the possible global mean shift between Ŷ
and X̂, some extended orthogonal matrix (Materials andMethods)
P ∈ Rn2×n1 recovering the sample correspondence between
X̂ and Ŷ, and some rotation matrix R ∈ Rd×d adjusting for
the possible covariance shift. Compared with the traditional
Procrustes analysis (31), Eq. 1 contains an additional matrix
P, allowing for a general unknown correspondence between
the samples in X and Y, which is the case in most of our
applications. To solve for Eq. 1, SMAI-align adopted an iterative
spectral algorithm that alternatively solves for P and (�, 
,R)
using high-dimensional Procrustes analysis. The final solution
(�̂, 
̂, R̂) then gives a good similarity transformation aligning

the two datasets in the original feature space. In particular, to
improve robustness and reduce the effects of potential outliers
in the data on the final alignment function, in each iteration
we remove some leading outliers from both datasets, whose
distances to the other dataset remain large. Moreover, to allow for
integration of datasets containing partially shared structures (up
to a user-specified threshold; Materials and Methods), users may
also request SMAI-align to infer the final alignment function
only based on the identified maximal correspondence subsets,
rather than the whole datasets. This makes the alignment more
robust to local structural heterogeneity. SMAI-align returns an
integrated dataset containing all the samples, along with the
similarity transformation, which are interpretable and readily
used for various downstream analyses (Fig. 1B). The idea of
SMAI-align is closely related to that of SMAI-test: a pass in
SMAI-test essentially renders the goodness-of-fit of the model
underlying SMAI-align, and therefore ensures its performance.
In addition, since SMAI-align essentially learns some underlying
similarity transformation, based on which all the samples are
aligned, the algorithm is easily scalable to very large datasets. For
example, one can first infer the alignment function by applying
SMAI-align to some representative subsets of the datasets, and
then use it to align all the samples (Materials and Methods).

To empirically evaluate the statistical validity of SMAI-test
and the consistency of SMAI-align, we generate simulated data
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based on some signal-plus-noise matrix model with various signal
structures, batch effects, and sample sizes (SI Appendix, Notes).
Our simulation results indicate that SMAI-test has desirable
type I errors across all the simulation settings, that is, achieving
the nominal probability (0.05) of rejecting the null hypothesis
when the datasets are truly alignable (SI Appendix, Table S1
and Materials and Methods). We also evaluate the performance
of SMAI-align in recovering the true alignment function by
measuring the estimation errors for each of the true parameters
(�∗, 
∗,R∗) generating the data (Materials and Methods). We
find that increasing the sample sizes leads to reduced estimation
errors in general (SI Appendix, Fig. S2B), suggesting statistical
consistency of SMAI-align.

SMAI Robustly Determines Alignability between Diverse
Single-Cell Data. We apply SMAI-test to diverse single-cell data
integration tasks and demonstrate its robust performance in
determining the alignability between datasets. The detailed infor-
mation about each dataset and the corresponding test results are
summarized in SI Appendix, Table S1. In particular, our real and
synthetic datasets involve diverse tissues including human livers,
human pancreas, human blood (peripheral blood mononuclear
cell, PBMC), human lung, human mesenteric lymph nodes
(MLN), human lung-draining lymph nodes (LLN), mouse brain,
mouse PBMC (either lipopolysaccharide (LPS) stimulated and
control), mouse primary visual cortex (VISP), and mouse gas-
trulation, and contain multiple modalities measured by various
sequencing technologies, such as single-cell transcriptomics (10X
Genomics, Smart-seq, Smart-seq2, Drop-seq, and CEL-seq2),
spatial transcriptomics (seqFISH, ISS and ExSeq), and chromatin
accessibility (ATAC-seq). The 13 integration tasks cover 7
different scenarios that arise commonly in single-cell research,
including 1) integration across different samples with the same
cell types, 2) integration across different samples with partially
overlapping cell types, 3) integration across samples with non-
overlapping cell types, 4) integration across studies with different
sequencing technologies, 5) integration across studies with
different tissues, 6) integration across studies with different
experimental conditions, and 7) integration of single-cell RNA-
seq and spatial-transcriptomic data. For each task, we test for
partial alignability between each pair of datasets, determining
whether at least 60% of the cells are alignable in the sense of our
null model (Materials and Methods). Among them, three out of
13 integration tasks, with zero or very low proportions (≤ 37%)
of cells under the overlapping cell types, are taken as negative
controls (Neg1–Neg3), whose alignability is doubtful in general;
the rest of the tasks, including both non-spatial integration tasks
(Pos1–Pos7) and spatial integration tasks (PosS1–PosS3), are
taken as positive controls, whose alignability is expected due to the
association with the same tissue or largely overlapping cell types.

SMAI-test returns significant P-values (<0.01) for all the
negative controls, correctly detecting their unalignability against
our null model. The positive control tasks are assigned non-
significant P-values, passing the (partial) alignability test as
expected. For the seven non-spatial integration tasks (Pos1–
Pos7), SMAI-test confirms the alignability between datasets with
largely overlapping (≥84%) cell types but possibly different
sequencing technologies, tissues or experimental conditions.
For the three spatial tasks (PosS1–PosS3), SMAI-test confirms
the alignability of the paired single-cell RNA-seq and spatial-
transcriptomic data from the same tissue, justifying its wide use
for downstream analyses such as prediction of unmeasured spatial
genes (Fig. 5).

Necessity of Certifying Data Alignability Prior to Integration.
In the absence of a principled procedure for determining the
alignability between datasets, the existing integration methods
often end up forcing alignment between any datasets by sig-
nificantly distorting and twisting each original dataset (Fig. 2).
Specifically, for each of the negative control tasks Neg1-Neg3, we
apply seven existing integration methods [Scanorama, Harmony,
LIGER, fastMNN, Seurat, Pamona (32), and SCOT (33)] to
obtain the integrated datasets, and then evaluate how well the
relative distances between the cells within each dataset before
integration are preserved in the integrated datasets. As a result,
we find overall low correlations (Kendall’s tau correlation on
average 0.6 across the seven methods and three negative control
tasks Neg1–Neg3, as compared with 0.9 achieved by SMAI-align
on average across the positive control tasks Pos1–Pos7) between
the relative distances of the cells within each dataset before
integration, and the distances after data integration (Materials
andMethods, Fig. 2B and SI Appendix, Fig. S3C ). In addition, we
observe many cases of false alignment of distinct cell types from
different datasets, and sometimes serious distortion and creation
of artificial cell clusters under the same cell type. For example,
in Task Neg1, we find the false alignment between ductal
cells and acinar cells by Scanorama, Harmony, and fastMNN,
between alpha cells and gamma cells by Scanorama, fastMNN,
and Seurat, between alpha cells and beta cells by Seurat, and
between alpha cells and endothelial cells by Pamona and SCOT
(Fig. 2A and SI Appendix, Fig. S3E); we also observe significant
distortion or dissolution of the alpha cell cluster and the beta cell
cluster after integration by Harmony, LIGER, and fastMNN, as
compared with the original datasets (Fig. 2A). As such, the final
integration results can be highly problematic and unfaithful to
the original datasets, which may lead to erroneous conclusions
from downstream analysis. SMAI-test is able to detect the lack
of alignability (i.e., significant P-values) between these datasets,
alerting users that the integrated data may not be reliable.

To evaluate the possible effects on downstream analysis, we
focus on one important application following data integration,
that is, the identification of DE genes for each cell type. We
consider the above five integration methods (Harmony and
Pamona are not included as they only produce integrated data
in the low-dimensional space). For the three negative control
tasks, we find that for many cell types, the set of DE genes
identified based on the integrated data have low overlap with
those identified based on the original datasets (Fig. 2C and SI
Appendix, Figs. S3D and S4). These discrepancies are likely
artifacts created by the respective integration methods. For
instance, in Task Neg1, we find that, compared with other
methods, the integrated data based on Seurat has lower power
in detecting DE genes for beta cells and ductal cells, which may
be a result of collapsing beta and ductal cells with other cell
types during Seurat integration (Fig. 2D). Similarly, we observe a
higher false discovery proportions (FDPs) in detecting DE genes
of alpha cells based on the integrated datasets by fastMNN and
LIGER than other methods, which is likely a consequence of
the artificial split of the alpha cell cluster during fastMNN and
LIGER integration (Fig. 2D).

SMAI Enables Principled Structure-Preserving Integration of
Single-Cell Data. For the first six non-spatial positive control
tasks (Tasks Pos1–Pos6) with annotated cell types, we further
apply SMAI-align to obtain the integrated datasets (Fig. 3A and
SI Appendix, Fig. S5) and compare the quality of alignment
with the above seven existing methods. We find SMAI-align
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A

B

D

C

Fig. 2. Forcing uncertified data integration may cause false alignment, serious distortions and misleading inferences. (A) UMAP visualizations of the original
(pooled) data under negative control task Neg1, and the integrated data as obtained by five popular methods (Scanorama, Harmony, LIGER, fastMNN, and
Seurat). For each method, the Top figure is colored to indicate the distinct datasets being aligned, whereas the Bottom figure colored to indicate different cell
types. See SI Appendix, Fig. S3 A and B for similar results about Pamona and SCOT, and the results about Neg2 and Neg3. (B) Under the three negative control
tasks, we show barplots of Kendall’s tau correlations between relative distances among the cells before integration and the distances after data integration,
as achieved by each methods. The red dashed line benchmarks the average Kendall’s tau correlation of 0.9 achieved by SMAI-align over the positive control
tasks Pos1–Pos7. (C) Boxplots of Jaccard similarity between the set of differentially expressed (DE) genes associated with a distinct cell type detected based on
the integrated data and the DE genes based on the original data. Each point represents a cell type. See SI Appendix, Fig. S3 C and D for similar results about
Pamona and SCOT. (D) For Task Neg1, we show some representative barplots of (1−false discovery proportion) (1−FDP) and the power of detecting DE genes
for some cell types based on the integrated data. Harmony is not included in (C) and (D) as its integration is only achieved in the low-dimensional space. Notably,
SMAI-test correctly detects that all the datasets in Tasks Neg1–Neg3 are not alignable.

has overall better performance in preserving the within-data
structures after integration (i.e., highest correlations between the
relative distances of the cells before integration and the distances
after integration), while achieving comparable if not better
performance in removing the unwanted variations between the
datasets (i.e., higher similarity in expression profiles for the same
cell types across batches) (Fig. 3A). In particular, these features are
consistent across multiple evaluation metrics, including Kendall’s
tau correlation and Spearman’s rho correlation for structure
preservation, and the D-B index (34) and the inverse Calinski–
Harabasz (C-H) index (35) for batch effect removal (SI Appendix,
Fig. S5). The advantages of these indices over other metrics
such as LISI or ARI are explained in Materials and Methods.
The desirable alignment achieved by SMAI and its advantages
over the existing methods is further supported by visualizing
low-dimensional embeddings of the integrated data. In Fig. 3B
and SI Appendix, Fig. S6, we observe that across all six tasks,

SMAI-align in general achieves good alignment of cells from dif-
ferent datasets under the same cell types. In contrast, distortions
and misalignment of certain cell types are found for some existing
methods. For instance, in Task Pos2, we observe false integration
of gamma cells and beta cells by Harmony and Seurat, and
significant distortion, that is, stretching and creation of multiple
artificial subclusters, of the alpha cell cluster by LIGER and
fastMNN (SI Appendix, Fig. S7A). As another example, for Task
Pos4, we observe strong distortion and artificial split of the excita-
tory neurons and the inhibitory neurons, by Harmony, LIGER,
and fastMNN (SI Appendix, Fig. S7B). In general, compared with
the existing methods, the integrated datasets obtained by SMAI-
align are overall of higher integration quality, and less susceptible
to technical artifacts, structural distortions, and information loss,
making them more reliable for downstream analyses.

Preserving and characterizing rare cell types is a desirable
property of data integration methods. In this respect, SMAI is by
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A

B

Fig. 3. Performance of SMAI-align on the six positive control integration tasks. (A) Compared with the six existing algorithms (black), SMAI-align (red) has
an overall best performance in preserving the within-data structures after integration while achieving a competitive performance in removing the unwanted
variations. The former is characterized by the highest Kendall’s tau correlations between the relative distances of the cells within a dataset before integration
and the distances after integration (y-axis), whereas the latter is reflected by higher values of the batch-associated Davies–Bouldin (D-B) index (x-axis shown
in log-scale). See SI Appendix, Fig. S5 for more comparisons about additional datasets and metrics. (B) UMAP visualizations of the integrated data as obtained
by SMAI-align. For each integration task, the Top figure is colored to indicate the two datasets being aligned, whereas the Bottom figure is colored to indicate
different cell types. See also SI Appendix, Fig. S7 for UMAP visualizations associated with other integration methods.

design less likely to merge rare cell clusters with other cell types
during alignment. To evaluate SMAI’s performance in preserving
and aligning rare cell types compared with the existing methods,
we focus on two positive tasks with more cell types (Pos5 and
Pos6), and assess for each rare cell type (containing less than
5% of the total cells) the performance of different methods in
both structure preservation and batch-effect removal. Our results
confirm the advantages of using SMAI in dealing with rare cell
types (SI Appendix, Fig. S8).

SMAI Improves Reliability and Power of Differential Expres-
sion Analysis. A common and important downstream analysis

following data integration is to identify the marker genes
associated with individual cell types based on the integrated
data (7, 8, 11). To demonstrate the advantage of SMAI-align in
improving the reliability of downstream differential expression
analysis, we focus on the first six positive control tasks and
evaluate how many DE genes for each cell type are preserved after
integration, and how many new DE genes are introduced after
integration. Specifically, for each integrated dataset produced by
fastMNN, LIGER, Scanorama, Seurat, or SMAI, we identify
the DE genes for each cell type based on the Benjamini–
Hochberg adjusted P-values, and compare their agreement with
the DE genes identified from the individual datasets before
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B

C

A

Fig. 4. SMAI improves reliability and power of DE analysis. (A) Boxplots of Jaccard similarity between the DE genes for each cell type identified based on
the integrated data, obtained by one of the six integration methods, and the genes identified based on the individual datasets before integration. Each point
represents a distinct cell type. The results indicate that SMAI-align oftentimes leads to more consistent and more reliable characterization of DE genes, as
compared with other methods. (B) Boxplots of log-expression levels of ITGB1 as grouped by cell types in the two datasets about human PBMCs (Task Pos3: Data
1 contains 219 natural killer (NK) cells and 3,143 other cells, and Data 2 contains 194 NK cells and 3,028 other cells), and in the integrated datasets (413 NK cells
and 6,171 other cells) as produced by SMAI-align, Seurat, fastMNN, and Scanorama. The DE pattern of ITGB1 is only preserved by SMAI after integration. (C)
Boxplots of log-expression levels of FOLR3 as grouped by cell types in the two datasets about human lung tissues (Task Pos5: Data 1 contains 68 macrophages
and 2,285 other cells, and Data 2 contains 911 macrophages and 1,000 other cells), and in the integrated datasets (979 macrophages and 3,285 other cells)
as produced by SMAI-align, Seurat, fastMNN, and Scanorama. Artificial DE patterns are created by existing integration methods. The stars above the boxplots
indicate statistical significance of DE test. Specifically, * means adjusted P-value < 0.05; ** means adjusted P-value < 0.01; *** means adjusted P-value < 0.001.
Harmony and LIGER are not included in (B) and (C) as they do not produce gene-specific integrated data.

integration using the Jaccard similarity index, which accounts
for both power and false positive rate in signal detection (SI
Appendix, Notes). As a result, we find that compared with other
methods, SMAI-align oftentimes leads to more consistent and
more reliable characterization of DE genes based on the integrated
data (Fig. 4A).

Biological insights can be obtained from the improved DE
analysis with SMAI-align. For instance, under Task Pos3
concerning human PBMCs, an important protein coding gene
ITGB1 (CD29), involved in cell adhesion and recognition (36),
has been found DE in natural killer (NK) cells compared with
other cell types in the SMAI-integrated data (adjusted P-value
< 10−11), but not in the Seurat-, fastMNN-, or Scanorama-
integrated data. In both original datasets before integration, we

also find statistical evidence supporting ITGB1 as a DE gene for
NK cells (Fig. 4B). The functional relevance of ITGB1 to NK
cells has been reported previously (37). In this case, the biological
signal is blurred and compromised during data alignment by
existing methods. See SI Appendix, Fig. S9 for similar examples.
On the other hand, we also observe that SMAI-align is less likely
to introduce artificial signals or false discoveries as compared with
the existing methods. For example, under Task Pos5 concerning
human lung tissues, we find almost no expression of the gene
FOLR3 in macrophages in both datasets before integration.
However, after integration, this gene is detected as DE gene based
on the Seurat-, fastMNN-, and Scanorama-integrated datasets,
but not based on the SMAI-integrated dataset (Fig. 4C ). Similar
examples are shown in SI Appendix, Fig. S10.
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A

B

Fig. 5. SMAI improves prediction of single-cell spatial transcriptomic data. (A) Boxplots of Kendall’s tau correlation between the actual expression levels of the
spatial genes and their predicted values based on the two-step procedure (alignment followed by k nearest neighbor regression) where the data alignment is
achieved by LIGER, Scanorama, Harmony, Seurat, fastMNN, or SMAI-align. Each point represents a distinct spatial gene. The methods are ordered according to
their median predictive performance, showing the overall best performance of SMAI. (B) Examples of true expression levels of some spatial genes from Task
PosS3, presented according to the cells’ spatial layout, and their predicted values based on SMAI-align. The colors are in log scale.

SMAI Improves Integration of scRNA-seq with Spatial Tran-
scriptomics. Another important application of data integration
techniques is the imputation of the spatial expression levels of
unmeasured transcripts in single-cell spatial transcriptomic data.
Spatial transcriptomics technologies extend high-throughput
characterization of gene expression to the spatial dimension and
have been used to characterize the spatial distribution of cell types
and transcripts across multiple tissues and organisms (38–40). A
major trade-off across all spatial transcriptomics technologies is
between the number of genes profiled and the spatial resolution
such that most spatial transcriptomics technologies with single-
cell resolution are limited to the measurement of a few hundred
genes rather than the whole transcriptome (41). Given the
resource-intensive nature of single-cell spatial transcriptomics
data acquisition, computational methods for upscaling the
number of genes and/or predicting the expression of additional
genes of interest have been developed, which oftentimes make
use of some paired single-cell RNA-seq data. Among the existing
prediction methods, an important class of methods (8, 42–44)
are based on first aligning the spatial and RNA-seq datasets
and then predicting the expression of new spatial genes by
aggregating the nearest neighboring cells in the RNA-seq data.
Applications of these methods have been found, for example, in
the characterization of spatial differences in the aging of mouse
neural and glial cell populations (44), and recovery of immune
signatures in primary tumor samples (45). As a key step within
these prediction methods, we show that data alignment achieved
by SMAI-align may lead to improved performance in predicting

unmeasured spatial genes. To ensure fairness, we compare various
prediction workflows which only differ in the data integration
step (Materials andMethods). For the three spatial positive control
tasks (PosS1–PosS3), we withhold each gene from the spatial
transcriptomic data, and compare its actual expression levels
with the predicted values based on the aforementioned two-step
procedure where the data alignment is achieved by one of the six
methods (LIGER, Scanorama, Harmony, Seurat, fastMNN, and
SMAI-align). Due to the intrinsic difficulty of predicting some
spatial genes that are nearly independent of any other genes, we
only focus on predicting the first half of spatial genes that have
overall higher correlations with other genes. Our analysis of the
three pairs of datasets yields the best predictive performance of
the SMAI-based prediction method (Fig. 5).

SMAI’s Interpretability Reveals Insights into the Sources of
Batch Effects. Unlike the existing methods, SMAI-align not
only returns the aligned datasets, but also outputs explicitly the
underlying alignment function achieving such alignment, which
enables further inspection and a deeper understanding of possible
sources of batch effects. Specifically, recall that the final alignment
function obtained by SMAI-align consists of a scaling factor (�̂),
a global mean-shift vector (̂
), and a rotation matrix (R̂); each
of them may contain important information as to the nature of
the corrected batch effects. For example, applying SMAI-align
to the human pancreas data (Task Pos1) leads to an alignment
function in terms of (�̂, 
̂, R̂), linking the CEL-Seq2 dataset to
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A B

Fig. 6. SMAI’s interpretability brings insights into the batch effects. (A) Visualization of the estimated mean-shift vector 
̂ from integrating the pancreatic data
(Task Pos1) by SMAI-align, whose components are ordered from the smallest (Bottom) to the largest (Top). In 
̂ only a sparse set of genes such as SST, CTSD,
PEMT, and REG1A are substantially affected by the batch effects. (B) Boxplots of expression levels of some genes highlighted in panel (A), grouped by different
cell types. Top: Smart-Seq2 dataset with n = 2,364. Bottom: CEL-Seq2 dataset with n = 2,244. Note that SST, CTSD, PEMT, and REG1A are all DE genes. The
batch effects on these genes are relatively uniform across cell types, and therefore SMAI-align does not affect DE results after integration.

the Smart-Seq2 dataset. The scaling factor �̂ = 1.01 suggests
little scaling difference between the two datasets. However, the
obtained global mean-shift vector 
̂ highlighted a sparse set
of genes such as SST, CTSD, PEMT, and REG1A, affected
by the batch effects (Fig. 6A). In particular, for both datasets,
we observe similar patterns in the relative abundances of the
transcript across different cell types (Fig. 6B), suggesting the
batch effects on these genes are relatively uniform across cell
types. Moreover, while SST, CTSD, PEMT, and REG1A are all
DE genes associated with some cell types, SMAI-align does not
affect DE patterns after integration due to its ability to identify
and remove such global discrepancy. Similar observations can
be made on other integration tasks such as human PBMCs
(Task Pos3, SI Appendix, Fig. S12). As for the rotation matrix
R̂, it captures and removes the batch effects altering the gene
correlation structures in each dataset (SI Appendix, Fig. S13). The
obtained SMAI-align parameters (�̂, 
̂, R̂) can also be converted
into distance metrics to quantify and compare the geometrically
constitutive features of the batch effects (SI Appendix, Fig. S14A)
and their overall magnitudes (SI Appendix, Fig. S14B).

Discussion
We develop a spectral manifold alignment and inference algo-
rithm that can determine general alignability between datasets
and achieve robust and reliable alignment of single-cell data.
The method explores the best similarity transformation that
minimizes the discrepancy between the datasets, and thus is
interpretable and able to reveal the source of batch effects.
Despite SMAI being limited to modeling batch effects as
linear transformations, our analyses of the ten positive control
integration tasks suggest its practical suitability and compe-
tence in removing batch effects between datasets across diverse
scenarios, oftentimes achieving superior performance compared
with the existing nonlinear data integration methods such as
Seurat or Harmony. In terms of computational time, standard
implementation of SMAI requires a similar running time as
existing methods such as Seurat (SI Appendix, Fig. S15A). The

hyperparameters of SMAI, such as the number of informative
eigenvalues for each data matrix, have been carefully determined
(SI Appendix, Notes), and shown to work robustly in our
benchmark datasets.

SMAI has a few limitations that deserve further development.
First, although our restriction to the similarity class already yields
promising performance over diverse applications, extending
to and allowing for more flexible nonlinear transformations
may lead to further improvement, especially in tracking and
addressing local discrepancies associated with particular cell types.
We describe two possible nonlinear extensions of SMAI in SI
Appendix, Notes. Second, the current method only makes use of
the overlapping features in both datasets. However, in many other
applications, such as integrative analysis of single-cell DNA copy
number variation data and single-cell RNA-seq data (46, 47),
the features are related but not shared in general. To achieve
integration across different modalities, one could first embed
multimodal data into a common lower-dimensional embedding
space using, for example, MOFA+(48), and then apply SMAI
to the embedded data with common features. Third, although
the current framework mainly concerns testing and aligning two
datasets, direct extension to multiple datasets is available, which
is achieved by applying SMAI in a sequential manner, based on
some pre-specified order for integrating the datasets. Moreover,
we point out that given the nature of our alignability test and
the spectral alignment algorithm, extension to the simultaneous
(non-sequential) testing and alignment of multiple datasets may
be achieved by replacing the Procrustes analysis objective in Eq.
1 with a generalized Procrustes analysis objective involving all
the available datasets and multiple alignment functions (31, 49).
Expanding SMAI’s scope of applications along these lines are
interesting direction for future work.

Materials and Methods

For clarity, here we introduce SMAI-test and SMAI-align along with their
theoretical properties, focusing on the global alignment of two datasets with
the same sample size. Extensions to aligning datasets with unequal sample
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sizes and SMAI for partial alignment, can be achieved by slightly modifying
these basic algorithms, whose details are provided in SI Appendix, Notes.

SMAI-Test Algorithm. The basic SMAI-test algorithm requires as input the data
matrices X ∈ Rd×n and Y ∈ Rd×n, each containing n cells and d features
(genes), a pre-determined parameter rmax corresponding to the number of
leading eigenvalues to be used in the test, and a global rescaling factor b > 0.
In principle, the number rmax should reflect the dimension of the underlying
true signal structure of interest, whereas the global scaling factor b > 0 adjusts
for the potential scaling difference between the two matrices. Estimators of rmax
and b are discussed in SI Appendix, Notes. The formal procedure of the test is
summarized as follows:

1. Compute and normalize eigenvalues: Define the centered matrices X̄ =

X(I− 11>) and Ȳ = Y(I− 11>). Let �(1)
1 ≥ �(1)

2 ≥ ... ≥ �(1)
n

and �(2)
1 ≥ �(2)

2 ≥ ... ≥ �(2)
n be the ordered eigenvalues of matrices

d−1X̄>X̄ and d−1Ȳ>Ȳ, respectively. Update �(1)
i ← b�(1)

i for all i =
1, 2, ..., n.

2. Construct test statistic: i) define �(`)
i =

( 1−n/d

�(`)
i

+

1
d
∑d

j=rmax+1
1

�(`)
j −�

(`)
i

)−2, and �(`)
i = 1√

�(`)
i

(
−

1−n/d

(�(`)
i )2

+

1
d
∑d

j=rmax+1
1

(�(`)
j −�

(`)
i )2

)−1 for ` = 1, 2 and i = 1, 2, ..., rmax.

ii) define the test statistic Tn =
∑rmax

i=1
d(�(1)

i −�
(2)
i )2

2�(1)
i �(1)

i +2�(2)
i �(2)

i

.

3. ObtainP-value: theP-value is defined as 1−F−1(Tn; rmax), where F(·; s) is
the cumulative distribution function of the�2 random variable with degree
of freedom s.

Theoretical Guarantee of SMAI-Test. We first introduce our assumption on
the centered matrices X̄ and Ȳ, as well as the formal null hypothesis, based
on which our testing procedure is developed. Suppose X̄ = Z1�

1/2
1 and

Ȳ = Z2�
1/2
2 , where�1,�2 ∈ Rn×n are positive definite matrices, and Z1, Z2

are independent copies of random matrix Z = (zij) ∈ Rd×n with entries

zij = d−1/2qij where the double array {qij : i = 1, 2, ..., d, j = 1, 2, ..., n}
consists of independent and identically distributed random variables whose first
four moments match those of a standard normal random variable. We assume
each of �1 and �2 has r spiked/outlier eigenvalues, and the remaining bulk
eigenvalues have some limiting spectral distribution. In other words, for each

�`, ` = 1, 2, there are exactly r eigenvalues�(`)
1 ≥ �(`)

2 ≥ ... ≥ �(`)
r larger

than a certain threshold, characterizing the dominant global signal structures in

the data, whereas for the rest of the eigenvalues �(`)
r+1 ≥ �(`)

r+2 ≥ ... ≥ �(`)
n

characterizing the remaining signal structures of much smaller magnitude,
their empirical distribution (i.e., histogram) has the same deterministic limit as
n→∞. The precise statements of these conditions are given as assumptions
(A1)–(A3) inSIAppendix, Notes. Moreover, to account for the high dimensionality
of the datasets, we assume that the number of genes is comparable to the number
of cells, in the sense that n/d→ c ∈ (0,∞) as n→∞. The above model is
commonly referred to as the high-dimensional generalized spiked population
model (50–53), which is widely used for modeling high-dimensional noisy
datasets with certain low-dimensional signal structures. In particular, the key
assumption about the spiked eigenvalue structure can be empirically verified in
our real single-cell datasets (SIAppendix, Fig. S1 and refs. 54 and 55). Essentially,
such a model ensures the existence and statistical regularity of some underlying
low-dimensional signal structure. For instance, it implies that when the signal
strength of the low-dimensional structure is strong enough, that is, when top

eigenvalues {�(`)
i }1≤i≤r are large enough, the underlying low-dimensional

signal structure would be roughly captured by the leading r eigenvalues and
eigenvectors of d−1X̄>X̄ and d−1Ȳ>Ȳ. Unlike many earlier works (56–59),

where the bulk eigenvalues {�(`)
i }i>r are assumed to be identical or all ones,

the current framework allows for more flexibility as to the possible heterogeneity
in the signal and/or noise structures.

Suppose the eigendecompositions of �1 and �2 are expressed as

�` = U`�`U>` , ` = 1, 2, where � = diag(�(`)
1 , �(`)

2 , ..., �(`)
n } is

a diagonal matrix containing the ordered eigenvalues, and the columns

of U` = [u(`)1 , u(`)2 , ..., u(`)n ] are the corresponding eigenvectors. By
definition, the (centered) low-dimensional structure associated with X̄ or
Ȳ can be represented by the leading r eigenvectors of �` weighted
by the square root of their corresponding eigenvalues, that is, L` =[√

�(`)
1 · u(`)1

√
�(`)

2 · u(`)2 ...

√
�(`)
r · u

(`)
r

]
∈ Rn×r ,where ` =

1, 2. With these, the null hypothesis about the general alignability between
X and Y can be formulated as the alignability between their low-dimensional
structuresL1 andL2 up to a possible rescaling and a rotation (note that translation
is not needed as L`’s are already centered). Formally, the null hypothesis H0
under the above statistical model states that “there exists a rotation matrix
R ∈ Rn×n and a scalar � > 0 satisfying L1 = �RL2.” To develop a statistical
test against such a null hypothesis, we notice that under H0, it necessarily

follows that �(1)
i = ��(2)

i for all 1 ≤ i ≤ r. As a result, it suffices to develop
a statistical test that can evaluate if the spiked eigenvalues of �1 and �2 are
identical up to a global scaling factor. This leads us to the proposed test. The
next theorem, proved in SI Appendix, Notes, theoretically justifies the proposed
test and ensures its statistical validity in terms of type I errors.

Theorem 1. Suppose X̄ and Ȳ are independent and satisfy the above high-
dimensional generalized spiked population model. Let p(X̄, Ȳ, rmax, �) be the
P-value returned by SMAI-test with (rmax, b) = (r, 1/�). Under the null
hypothesis H0, for any 0 < � < 1/2, it holds that lim(d,n)→∞ PH0

(p(X̄, Ȳ, rmax, b) < �) < �.

SMAI-Align Algorithm. The basic SMAI-align algorithm requires as input the
normalized data matricesX and Y, the eigenvalue threshold rmax, the maximum
number of iterations T , and the outlier control parameter k. The algorithm
starts with a denoising procedure during which the centered, best rank rmax
approximations (X̄ and Ȳ) of the data matrices are obtained. Multiple ways
are available to denoise a high-dimensional data matrix with low-rank signal
structures (60–62). To ensure both computational efficiency and theoretical
guarantee, we adopt the hard-thresholding denoiser (SI Appendix, Notes).
The second step is a robust iterative manifold matching and correspondence
algorithm, motivated by the shuffled Procrustes optimization problem [1].
Spectral methods that generalize the classical ideas of shape matching and
correspondence analysis in computer vision (63, 64) and the theory of Procrustes
analysis (31, 49), are used to account for high dimensions. Specifically, the
algorithm alternatively searches for the best basis transformation over the sample
space and the feature space. In each iteration, the following ordinary Procrustes
analyses are considered in order:

min
P∈O(n),�∈R

‖X̄− �RȲP‖2
F , with R given, [2]

min
R∈O(d),�∈R,
∈Rd

‖X̄− �RȲP− 
1>n ‖
2
F , with P given. [3]

The first optimization looks for an orthogonal matrix P ∈ O(n) and a scaling
factor � ∈ R so that the data matrix X̄ is close to the transformed data matrix
�RȲ, subject to recombination of its samples. In the second optimization, a
similarity transformation (� , 
, R) is obtained to minimize the discrepancy
between the data matrix X̄ and the sample-matched data matrix ȲP. The matrix
P relaxes the original permutation class, allowing for more flexible sample
matching between the two data matrices; R represents the rotation needed to
align the features between the two matrices. To improve robustness against
potential outliers in the data, in each iteration we remove the top k outliers
from both datasets, whose distances to the other dataset are the largest after
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alignment. T and k are tunable parameters, about which we find 3 ≤ T ≤ 5
and 5 ≤ k ≤ 20 work robustly for our benchmark datasets. In the last step,
we determine the direction of alignment, that is, whether aligning Y to X, or
aligning X to Y. In general, such directionality is less important as our similarity
transformation is invertible and symmetric with respect to both datasets. As a
default setting, our algorithm automatically determines the directionality by
pursuing whichever direction that leads to a smaller between-data distance.
Users can also specify the preferred directionality, which can be useful in
some applications such as in the prediction of unmeasured spatial genes using
single-cell RNA-seq data. Additional technical details of SMAI-align are provided
in SI Appendix, Notes.

Evaluation of Within-Data Structure Preservation and Batch Effect
Removal. For the negative control tasks Neg1–Neg3, and the positive control
tasks Pos1–Pos7, we compare the overall correlation between the pairwise
distances of cells before and after alignment. Specifically, suppose X ∈ Rd×n1

and Y ∈ Rd×n2 are the original normalized datasets, and X∗ ∈ Rr×n1 and
Y∗ ∈ Rr×n2 are the aligned datasets obtained by one of the integration
methods, where r could be different from d. We first obtainD(X) ∈ Rn1×n1 ,
whose entries contain pairwise Euclidean distances between the columns of X.
Similarly, we obtainD(Y),D(X∗), andD(Y∗). Let [D(X)]i. be the i-th row of
D(X). We calculate Kendall’s tau correlations and Spearman’s rho correlations
between [D(X)]i. and [D(X∗)]i., for all i’s, and then use the average correlation
r̄X across all i’s to quantify how well the structure within X is preserved after
integration, inX∗. Similarly, we also calculate the average correlation r̄Y between
the rows ofD(Y)and the rows ofD(Y∗), to quantify the preservation of structure
within Y after integration. Then we take the mean of r̄X and r̄Y as the final metric
for the within-data structure preservation of the method, reported as the y-axis
of the scatter plots in Figs. 2B and 3A and SI Appendix, Fig. S5.

Once the integrated data (X∗, Y∗) are obtained, we calculate the D-B
index and the inverse C-H index, to quantify how well the two integrated
datasets are mixed. For a given integrated dataset consisting of K batches

C1, ..., CK , we define the D-B index = 1
K
∑K

k=1 maxj 6=k
Sk+Sj
Mij

, where

Si =
[ 1
|Ck|

∑
i∈Ck ‖Xi − Ak‖

2
2
]−1/2, Mkj = ‖Ak − Aj‖2, with Ak being the

centroid of batch k of size |Ck|, and Xi being the i-th data point. We define the

inverse C-H index =

[∑K
k=1

∑
i∈Ck
‖Xi−Ak‖2

2
N−K

]/[∑K
k=1 |Ck|·‖Ak−A‖

2
2

K−1

]
,

where A is the global centroid, and N is the total sample size. These metrics
essentially quantify the ratio between within-batch variations and between-batch
variations. As a result, a method achieving better alignment quality will have
a higher D-B index, and a higher inverse C-H index. These metrics are shown
as the x-axis of the scatter plots in Fig. 3A and SI Appendix, Fig. S5, where we
evaluate, for a given pair of datasets (i.e., fixing the within-batch variations),
which alignment method leads to smaller between-batch variations. Compared
with other metrics such as LISI and ARI, the D-B and inverse C-H indices are
calculated from the pairwise distances, and do not rely on pre-specified nearest
neighbor graphs (LISI), or the predicted cluster labels (ARI), which may be
sensitive to specific methods.

Differential Expression Analysis. For each of the positive control tasks Pos1–
Pos6, we first obtain an integrated dataset containing all the samples, by using
one of the alignment methods. Then, for each cell type k, we identify the set of
marker genes Sk based on the aforementioned procedure. We use a threshold
of 0.01 on the BH-adjusted P-values to select the DE genes. In the meantime,
for each cell type k, we also obtain the benchmark set Sbk of marker genes, which
contains all the DE genes identified based on the individual datasets before
alignment. Finally, we compute the Jaccard similarity index between the set Sk
and the set Sbk . The results are reported in Fig. 3C.

Prediction of Spatial Genes. For the three spatial positive control tasks PosS1–
PosS3, we withhold each gene from the spatial transcriptomic data, and predict
its values based on the following procedure. In particular, we denoteX ∈ Rd×n1

as the spatial transcriptomic data, and Y ∈ Rd×n2 as the paired RNA-seq data

with the same features. We also denote X−i. ∈ R(d−1)×n1 as the submatrix
of X after removing the i-th row, and denote Xi. ∈ Rd as the i-th row of X. For
each 1 ≤ i ≤ d, we

1. Apply one of the alignment methods (LIGER, Scanorama, Seurat, fastMNN,
or SMAI) to X−i. and Y−i., and obtain the aligned datasets X∗

−i. and Y∗
−i.;

2. Fit a k-nearest neighbor regression (with k = 5 in all our analysis) between
the predictor matrixY∗

−i. ∈ R(d−1)×n2 and the outcome vectorYi. ∈ Rn2 ;

3. Predict the outcome vector X̂i. associated with the predictor matrix X∗
−i.

based on the above regression model.

To evaluate the prediction accuracy, we calculate Kendall’s� correlation between
Xi. and X̂i..

Cell Type Specific Alignment using SMAI. To characterize possible intra-cell
type variability, one can apply SMAI to each cell type separately, to learn
the cell-type specific alignment. In this way, each cell type will have its
own alignment function, characterizing the intra-cell type variability across
different studies or conditions. In particular, the availability of a closed-
form expression of the obtained alignment function allows for quantitatively
comparing the similarity between the obtained alignment functions for different
cell types. We show a scatter plot, where each point represents a cell-type
specific alignment function, whose coordinates demonstrate the magnitude of
the associated rotation and translation, obtained by converting the obtained
rotation and translation parameters into normalized metrics between 0 and 1.
Focusing on two positive integration tasks (Tasks Pos4 and Pos5), we applied
SMAI to each cell type to learn the cell-type specific alignment functions.
Interestingly, for each of the tasks, we found a remarkable similarity in the
obtained cell-type specific alignment functions (SI Appendix, Fig. S14C), which
supports the default design of SMAI using a common global alignment across
cell types.

Data Preprocessing. The raw counts data listed in SI Appendix, Table S1 were
filtered, normalized, and scaled by following the standard procedure (R functions
CreateSeuratObject, NormalizeData and ScaleData under default settings) as
incorporated in the R package Seurat. For datasets with more than 2,000
genes, we also applied the R function FindVariableFeatures in Seurat to identify
the top 2,000 most variable genes for subsequent analysis. For the human
pancreatic data associated with Task Pos1, we remove the cell types containing
less than 20 cells. For the cross-tissue integration tasks (Neg3 and Pos6), a
subset of 4,000 cells were randomly sampled from each of the tissues for our
analysis.

Data, Materials, and Software Availability. The human pancreatic data can
be accessed in the R package SeuratData (https://github.com/satijalab/seurat-
data) under the dataset name panc8. The PBMC data can be accessed
in the R package SeuratData (https://github.com/satijalab/seurat-data) un-
der the dataset name pbmcsca. The mouse brain chromatin accessibility
data were downloaded from Figshare (https://figshare.com/ndownloader/files/
25721789), containing a dataset from Fang et al. (65) (single-nucleus ATAC-
seq protocol), and a 10X Genomics dataset for fresh adult mouse brain
cortex (sample retrieved from https://support.10xgenomics.com/single-cell-
atac/datasets/1.2.0/atac_v1_adult_brain_fresh_5k). Both ATAC-seq datasets
have been preprocessed by Luecken et al. (6) to characterize gene activities.
The human lung data were downloaded as Anndata objects (samples 1, A3,
B3 and B4) on Figshare (https://figshare.com/ndownloader/files/24539942).
The human liver, MLN, and LLN immune cell data were downloaded from
https://www.tissueimmunecellatlas.org. The mouse PBMC datasets (samples
“Control 1h” and “LPS 1h”) were downloaded from Gene Expression
Omnibus (GSE178431) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE178429. The mouse gastrulation seqFISH data were downloaded from
https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/, and the RNA-
seq (10X Chromium) data can be accessed as “Sample 21” in MouseGastru-
lationData within the R package MouseGastrulationData. For the mouseVISP
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data, the ISS spatial transcriptomic data can be downloaded from https://
github.com/spacetx-spacejam/data, the ExSeq spatial transcriptomic data can
be downloaded from https://github.com/spacetx-spacejam/data, and the Smart-
seq data can be downloaded from https://portal.brain-map.org/atlases-and-
data/rnaseq/mouse-v1-and-alm-smart-seq. The R and Python packages of SMAI,
and the R codes for reproducing our simulations and data analyses, are available
at our GitHub repository https://github.com/rongstat/SMAI.
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